

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

Платформа виртуализации ПК «Иридиум» ${\rm RU.Y\Gamma C\Phi.00001\text{-}01~92~01}$

Листов 21

RИЦАТОННА

Настоящий документ включает в себя описание функциональных характеристик платформы виртуализации ПК «Иридиум» (далее – ПК «Иридиум», изделие), разработанной АО «Иридиум».

СОДЕРЖАНИЕ

1	Обш	ие Сведения	4			
	1.1	Основные сведения о ПК «Иридиум»	4			
	1.2	Назначение ПК «Иридиум»	4			
	1.3	Комплектность изделия	5			
1.4		Функциональные возможности ПК «Иридиум»	5			
2	Apxı	итектура ПК «Иридиум»	11			
3	Фун	кциональные характеристики ПК «Иридиум»	13			
	3.1	Защищенная специализированная закрытая ОС	13			
	3.2	Виртуальный коммутатор	14			
3.3		Файловая система	14			
3.4		Программно-определяемая СХД «Шторм»	15			
	3.5	Система оркестрации	15			
	3.6	Модуль управления удаленными рабочими столами	16			
3.7		Резервное копирование и репликация	16			
	3.8	Межсетевой экран	17			
	3.9	Мониторинг	18			
4	Треб	ования к минимальному составу технических средств	19			
5	Треб	бования к программному обеспечению	19			
6	5 Требования к надежности19					
7	Специальные требования20					

1 Общие Сведения

1.1 Основные сведения о ПК «Иридиум»

Платформа виртуализации ПК «Иридиум» — это многокомпонентное изделие, предназначенная для использования в клиент-серверных системах.

ПК «Иридиум» включен в единый реестр российских программ для электронных вычислительных машин и баз данных Минкомсвязи России – реестровая запись №16819 от 01.03.2023.

ПК «Иридиум» является комплексным решением для создания как классических конвергентных, так и гиперконвергентных виртуальных сред. Изделие поддерживает работу с классическими системами хранения данных (СХД) по протоколам Fibre Channel, iSCSI, NFS. ПК «Иридиум» также может быть использован для развертывания гиперконвергентного распределенного программно-определяемого СХД на базе локальных дисков, установленных в физические хосты, без использования классической разделяемой СХД. Ближайший аналог — продукт VMware vSAN.

1.2 Назначение ПК «Иридиум»

Сфера применения ПК «Иридиум» – как предприятия госсектора, так и коммерческие предприятия. ПК «Иридиум» может быть использован как на предприятиях крупного бизнеса, так и среднего и даже малого бизнеса.

В составе ПК «Иридиум» есть все необходимые инструменты для миграции нагрузок с любых импортных систем виртуализации (таких, как VMware vSphere и Microsoft Hyper-V), а также с любых отечественных систем виртуализации.

1.3 Комплектность изделия

Обозначение изделия	Наименование изделия	Колич ество	Примечание
RU.УГСФ.00001-01	1 Программный комплекс "Иридиум" в составе:		Примечание 4
RU.КНРШ.00014-01	1.1 Средство виртуализации "Звезда"		
RU.КНРШ.00007-01	1.2 Система хранения данных "Шторм"		Примечание 6
RU. УГСФ.00005-01	1.3 Программный комплекс "Иридиум-VDI"		Примечание 7
RU.ЛНТФ.00001-01	1.4 Программный комплекс «Средство управления единичным хостом ПВ»		Примечание 8
RU.ЛНТФ.00002-01	1.5 Программный комплекс «Средство управления группой хостов ПВ»		Примечание 9

Примечания

- 1 Количество и набор составных частей определяется по решению Заказчика спецификацией поставки.
- 2 Количество определяется спецификацией поставки.
- 3 Составные части ПК "Иридиум" поставляются на одном USB-носителе.
- 4 В приложении А даны контрольные суммы неизменяемых компонентов программного обеспечения (ПО) ПК "Иридиум".
- 5 Программный комплекс "Иридиум" зарегистрирован в Реестре российского программного обеспечения (запись в реестре от 01.03.2023 №16819).
- 6 Система хранения данных "Шторм" зарегистрирована в Реестре российского программного обеспечения (запись в реестре от 13.02.2023 №16626).
- 7 Программный комплекс "Иридиум-VDI". Свидетельство о государственной регистрации программы для ЭВМ № 2025619685.
- 8 Программный комплекс «Средство управления единичным хостом ПВ» является опционально входящим в состав ПК «Иридиум» компонентом
- 9 Программный комплекс «Средство управления группой хостов ПВ» является опционально входящим в состав ПК «Иридиум» компонентом

1.4 Функциональные возможности ПК «Иридиум»

ПК «Иридиум» обеспечивает:

– установка непосредственно на аппаратное обеспечение без использования хостовой операционной системы (гипервизор 1 типа);

- создание и управление виртуальной средой на группе серверов (кластере);
 - поддержка графического установщика;
- объединение физических серверов в кластер до 1536 узлов, обеспечивающих постоянную доступность виртуальной машины, даже в случае отказа физического сервера;
- обеспечение возможности использования в качестве гостевой ОС операционных систем семейств Linux, Windows;
 - функционирование средств защиты информации:
 - виртуальных систем обнаружения вторжения;
 - межсетевых экранов;
 - антивирусных средств;
 - средств анализа защищенности;
 - средств защиты информации от DDoS атак;
 - средств корреляции событий безопасности;
 - средств контроля утечки информации из информационной систем;
- наличие сертифицированной и несертифицированной версии изделия;
 - поддержка функции Multipathing;
- создание виртуальных машин (BM), их образов и шаблонов с поддержкой 32 и 64-битных гостевых операционных систем;
- возможность создания BM из настраиваемых шаблонов с помощью графического и консольного интерфейсов;
 - возможность группового создания ВМ из шаблонов;
 - поддержка в ВМ до 255 виртуальных процессоров;
- возможность управления конфигурацией ВМ с помощью графического и консольного интерфейсов;

- включает в состав, программное обеспечение для управления виртуальными рабочими местами (VDI);
- поддержка различных сценариев виртуализации рабочих мест с одним или несколькими брокерами (с балансировкой), внутри одного кластера или с выделенным кластером VDI;
- возможность изменения количества выделенных процессоров и размера оперативной памяти виртуальным машинам без завершения их функционирования;
- возможность подключения к ВМ устройств из состава аппаратных средств, на которых функционирует серверная часть изделия, включая устройства USB 3.0;
- возможность интеграции с внешними системами управления и мониторинга для сбора статистики производительности и контроля состояния (поддержка протоколов: SNMP, SSH, CLI, CIM, API и т.д.);
- возможность добавления виртуальных дисков в гостевую операционную систему и увеличение их размеров без остановки ВМ;
 - поддержка открытого стандарта Open Virtualization Format (OVF);
 - возможность подключения внешних хранилищ по протоколу FC;
 - возможность клонирования ВМ;
- возможность создания кластеров высокой доступности, выполняющих перезапуск ВМ в случае выхода из строя узла кластера;
- возможность переноса ВМ между узлами кластера без прерывания трафика;
- обеспечение автоматического распределения сервером виртуализации ресурсов между работающими ВМ;
- миграция дисков работающих ВМ между хранилищами без их остановки;

- сервисный режим обслуживания узла с автоматическим перемещением работающих BM без их остановки;
- возможность централизованного управления кластерами,
 серверной частью изделия на всех узлах кластера высокой доступности,
 хранилищами и виртуальными коммутаторами;
- возможность мониторинга работоспособности и использования ресурсов ВМ;
- поддержка виртуальных коммутаторов с технологией VLAN (Virtual Local Area Network);
- подключение к BM по протоколу SPICE USB-устройств из состава аппаратных средств, на которых функционирует клиентская часть изделия;
- возможность ограничения для сетевого и дискового ввода-вывода
 ВМ на основе их групповых или индивидуальных настроек;
 - поддержка механизмов оптимизации оперативной памяти:
 - дедупликация страниц;
 - динамическое распределение;
 - выгрузка в файл подкачки, область подкачки,
 сформированную на постоянном накопителе, либо оперативной памяти;
 - Memory Balooning;
- возможность создания динамически расширяющегося виртуального дискового пространства ВМ с обеспечением возможности выделения соответствующих аппаратных средств (физических дисков, блоков физических дисков) по мере заполнения виртуального дискового пространства ВМ;
- клиентское приложение с графическим интерфейсом для подключения к ВМ;
 - поддержка работы с контейнерами;

- возможность работы с хранилищем LVM, а также использование технологии тонких томов LVM Thin Provision;
 - поддержка создания программно-определяемой СХД;
- возможность параллельного доступа нескольких ВМ к одному виртуальному диску;
- возможность централизованного обновления с использованием штатных средств;
- возможность резервирования интерфейсов управления инфраструктурой виртуализации;
- возможность размещения контроллера на хосте (без использования дополнительного физического сервера);
 - возможность создания снэпшотов ВМ;
 - миграция BM из сред виртуализации, в том числе VMware;
 - создание шаблона на базе существующей ВМ.
- поддержка Affinity Rule размещение выбранных BM на одном хосте виртуализации и Anti-Affinity Rule размещение выбранных BM на разных хостах виртуализации;
- обеспечение идентификации и аутентификации субъектов доступа (пользователей и администраторов) до предоставления доступа к функциям виртуализации и управления в том числе в режиме взаимодействия со средствами создания единого пространства пользователей;
- запуск ВМ в виде отдельного процесса, функционирующего от имени учетной записи субъекта доступа (пользователя) с унаследованием его мандатных атрибутов;
- защита файлов-образов BM от модификации в процессе функционирования BM;
- регистрация событий с использованием средств централизованного протоколирования;

- регулярное обновление для нейтрализации угроз эксплуатации уязвимостей;
- управление доступом субъектов доступа к объектам доступа в виртуальной инфраструктуре, в том числе внутри виртуальных машин;
- разбиение виртуальной инфраструктуры на сегменты (сегментирование виртуальной инфраструктуры) для обработки информации отдельным пользователем и (или) группой пользователей.
- интерфейс на русском языке с возможностью переключения на иностранный язык.
- наличие встроенного функционала резервного копирования, а также возможность интеграции с программным обеспечением для резервного копирования, выполняющим как агентное, так и безагентное резервное копирование и восстановление как самих ВМ, так и их шаблонов, образов и дисков в различных форматах (включая qcow2), на различных типах томов (включая lvm, ceph и S3-хранилища).

2 Архитектура ПК «Иридиум»

При создании ПК «Иридиум» мы постарались максимально приблизить пользовательский опыт администратора к таковому для продукта VMware vSphere. Веб-интерфейс системы оркестрации и одиночных виртуализации ПК «Иридиум» максимально точно соответствует вебинтерфейсу VMware vCenter (система оркестрации в продукте VMware vSphere). По приблизительным оценкам в Российской Федерации более 100 тысяч специалистов по VMware vSphere, подготовленных за годы присутствия компании VMware на российском рынке. Эти специалисты могут начать работать с ПК «Иридиум», не являясь при этом глубокими специалистами по OC Linux, и не проходя длительное 1-2-годичное переобучение (что требовалось бы для эксплуатации программных продуктов наших конкурентов).

Но веб-интерфейса «как у VMware» оказалось недостаточно для решения поставленной задачи. Реализация функционала платформы виртуализации на уровне VMware vSphere оказалась невозможна на базе программных продуктов Open Source, из-за существенных отличий в архитектуре. Также модели управления виртуальной средой в продуктах Open Source существенно отличаются от тех, к которым привыкли администраторы VMware.

В последние годы мы последовательно избавлялись от опенсорсной составляющей кода в наших программных продуктах и заменяли ее на нативный программный код, разработанной нашей командой. В настоящее время переписано уже более 40% имевшегося исторического опенсорсного кода.

Пример инфраструктуры с применением изделия представлен на рисунке 1.

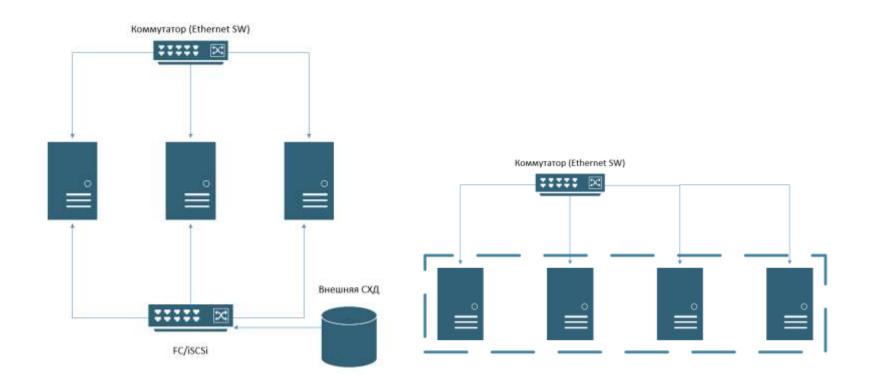


Рисунок 1 – Инфраструктурная схема для конвергентного и гиперконвергентного варианта

3 Функциональные характеристики ПК «Иридиум»

3.1 Защищенная специализированная закрытая ОС

Разработка продукта берет начало в 2009 году. ПК «Иридиум» изначально сертифицированная как защищенная отечественная система виртуализации. В процессе разработки продукта были разработаны более 150 патчей ядра операционной системы (как функциональные, так и патчи информационной безопасности). Из операционной системы было исключено все ПО, которое не имеет отношения к виртуализации, что сократило до минимума возможную площадь атаки. Был исключен менеджер пакетов с целью предотвращения установки ПО из сторонних репозиториев Open Source. С целью предотвращения запуска любого стороннего не одобренного вендором ПО был реализован динамический контроль исполняемого кода. Это предполагает проверку цифровой подписи при попытке запуска любого исполняемого кода (как бинарных файлов, так и модулей ядра). При неуспешной проверке цифровой подписи или ее отсутствии исполняемый код не запускается.

Таким образом, была разработана специализированная закрытая защищенная операционная система — гипервизор 1-го типа, которая устанавливается непосредственно на физические серверы. Ключевые особенности нашей специализированной закрытой защищенной операционной системы:

- Минимальная площадь атаки за счет исключения ПО, не относящегося к задачам виртуализации,
- Отсутствие возможности запуска стороннего не одобренного вендором ПО за счет динамического контроля исполняемого кода,
- Реализация встроенных средств защиты информации (СЗИ).

Вышеперечисленные особенности являются критичными для защищенной системы виртуализации, поскольку защищенность любой ИТ-системы не может быть выше защищенности платформы виртуализации, на которой развернута данная ИТ-система. В случае применения ПК «Иридиум» возможно развертывание

государственных информационных систем (ГИС) разных классов защищенности на одном и том же кластере и даже на одном и том же хосте виртуализации. Также за счет применения встроенных СЗИ допускается одновременное развертывание как сертифицированных, так и несертифицированных гостевых ОС на одном и том же хосте виртуализации. В защищенной операционной системе полностью исключается взлом гипервизора через гостевую ОС.

Гипервизор из состава ПК «Иридиум» сертифицирован ФСТЭК России как средство защиты информации (СЗИ) – сертификат № 4934, действителен до 05.05.2030.

3.2 Виртуальный коммутатор

В состав ПК «Иридиум» входит виртуальный сетевой коммутатор, максимально приближенный к функционалу виртуального коммутатора VMware vSphere.

Виртуальный коммутатор в ПК «Иридиум» является распределенным, что позволяет осуществлять централизованное управление сетевым функционалом платформы виртуализации.

3.3 Файловая система

В ПК «Иридиум» была полностью «с нуля» переписана подсистема ввода/вывода в части взаимодействия с СХД, а также была разработана кластерная файловая система – аналог VMware VMFS, по функционалу не уступающая VMware VMFS. Архитектура данной псевдо-файловой системы предполагает, что данные хранятся непосредственно в виде блоков на разделяемых LUN СХД, а наименования файлов и папок хранятся в виде метаданных. Сама прослойка файловой системы фактически отсутствует. Благодаря достичь высоких показателей ЭТОМУ удалось производительности подсистемы ввода/вывода - по результатам тестов, проведенных нашими заказчиками, производительность псевдо-файловой системы на 18-36% превосходит производительность файловой системы VMFS от VMware, на том же самом аппаратном обеспечении.

3.4 Программно-определяемая СХД «Шторм»

В состав ПК «Иридиум» входит распределенная программно-определяемая СХД «Шторм», которая может быть использована для построения гиперконвергентных кластеров хранения на базе локальных дисков, установленных в физические хосты.

В гиперконвергентном кластере один и тот же хост виртуализации может одновременно участвовать в создании распределенного кластера хранения, и запускать продуктивные виртуальные машины.

Другой вариант — создание программно-определяемого кластера хранения на выделенных хостах (конвергентный кластер), и предоставление пространства хранения данного конвергентного кластера хостам виртуализации и другим системам по протоколам iSCSI, NFS, S3. Ближайший аналог программно-определяемой СХД «Шторм» — продукт VMware vSAN.

3.5 Система оркестрации

Весь интеллектуальный функционал системы виртуализации реализован в системе оркестрации, которая была разработана полностью «с нуля» и не основана ни на каких опенсорсных аналогах. Пример функционала, который реализован в системе оркестрации:

- Живая миграция ВМ между хостами виртуализации,
- Живая миграция виртуальных дисков ВМ между хранилищами,
- Отказоустойчивость хостов виртуализации (при падении хоста все ВМ автоматически перезапускаются на других хостах кластера),
- Отказоустойчивость самой системы оркестрации,
- Автоматическая балансировка нагрузки на хосты виртуализации,
- Многие другие функции.

Полнота функционала платформы виртуализации, реализованного в системе оркестрации, находится на уровне программных продуктов лидеров рынка (ближайшим аналогом является vCenter разработки компании VMware).

3.6 Модуль управления удаленными рабочими столами

Программный комплекс "Иридиум-VDI" – модуль управления удаленными рабочими столами (Virtual Desktop Infrastructure – VDI) предназначен для создания защищенных пользовательских сред на базе виртуальных рабочих столов Windows и Linux, а также с применением опубликованных приложений Windows и Linux. VDI-брокер обеспечивает следующие основные функции:

- Автоматическое развертывание ВМ с удаленными рабочими столами на платформе виртуализации,
- Аутентификация пользователей по внешним базам (Microsoft Active Directory, Open LDAP, FreeIPA и многие другие),
- Управление сессиями доступа к удаленным рабочим столам и опубликованным приложениям.

Разработан защищенный протокол доступа к удаленному рабочему столу на базе протокола SPICE. Разработанный протокол доступа предполагает использование таких кодеков, как H.264/H.265, и позволяет достичь превосходного качества видео, статических изображений, текста, аудио и т.д. при сравнительно низком использовании полосы пропускания (сопоставима с полосой, используемой протоколом PCoIP компании Teradici).

3.7 Резервное копирование и репликация

Модуль резервного копирования позволяет делать копии и восстанавливать ВМ на уровне образов виртуальных дисков. Также модуль резервного копирования позволяет реплицировать виртуальные диски ВМ между основной и удаленной

площадкой, позволяя строить катастрофоустойчивые решения на базе ПК «Иридиум».

Модуль резервного копирования позволяет делать резервные копии ВМ в процессе их работы, при этом консистентность данных на виртуальных дисках обеспечивается следующими двумя способами:

- Посредством агентского ПО, установленного в гостевую ОС, выполняется сброс данных из кэшей виртуальных контроллеров ВМ на виртуальный диск, после чего создается снимок состояния ВМ, и происходит резервное копирование «замороженного» базового виртуального диска ВМ. По окончании резервного копирования происходит консолидация снапшота с базовым диском.
- Посредством создания слепка виртуальной памяти ВМ (вместе со всеми данными в кешах виртуальных контроллеров), после чего также создается снимок состояния ВМ, и происходит резервное копирование «замороженного» базового виртуального диска ВМ. При восстановлении ВМ виртуальная память восстанавливается из ранее сделанного слепка памяти.

3.8 Межсетевой экран

Модуль межсетевого экрана (МСЭ) предназначен для защиты виртуальных сетей с подключенными к ним ВМ. Он является сертифицированным МСЭ, а также сертифицированным средством криптозащиты информации (СКЗИ), обеспечивающим шифрование наложенных туннелей с использованием криптоалгоритмов ГОСТ.

- Максимальная скорость фильтрации до 50 Гбит/сек
- Фильтрация как на третьем уровне (маршрутизируемый режим), так и на втором уровне (режим коммутации или «прозрачный» МСЭ)
- Фильтрация по любым полям в заголовке сетевого пакета (вплоть до седьмого уровня)

- Фильтрация по расписанию
- Фильтрация по доменному имени
- Система обнаружения вторжений (СОВ), работает как в активном, так и пассивном режиме

3.9 Мониторинг

Модуль мониторинга обеспечивает отслеживание статуса всех компонент платформы виртуализации (хосты, виртуальные машины, хранилища), выявление неисправностей, сбор логов и прочей телеметрии, анализ информации, отображение ее в графическом виде и т.д. Ближайший аналог – продукт VMware Aria Operations.

4 Требования к минимальному составу технических средств

Для обеспечения нормальной работы ПК «Иридиум» в части выполнения всей заявленной функциональности, устанавливаются следующие минимальные технические требования:

Сервера для всех узлов с характеристиками не ниже:

- а) системный диск минимум от 64 Гб, рекомендован SSD;
- б) 2-4 x 10/40 GB Ethernet.

Сервера управления и мониторинга (первые три узла кластера) с характеристиками не ниже: a) объем оперативной памяти – 2 Гб;

б) объем жестких дисков – 64 Гб.

Сервера локального хранилища с характеристиками не ниже:

- a) 1 CPU на OSD диск;
- б) объем оперативной памяти 4 Γ б на OSD диск + 2% кэш-пространства;
- в) объем жестких дисков 0-12 OSD дисков (от 64 Γ б, рекомендован SSD).

Сервера ISCSI Target с характеристиками не

ниже: a) 2 CPU;

б) объем оперативной памяти – 16Γ б.

5 Требования к программному обеспечению

ПК «Иридиум» функционирует на аппаратном обеспечении и не требует для своего запуска общесистемного ПО.

6 Требования к надежности

Средняя наработка на отказ - не менее 10000 часов.

Срок службы - 10 лет.

Гарантийный срок эксплуатации - 3 года.

7 Специальные требования

ПК «Иридиум» разработан с учетом следующих требований руководящих документов:

- Приказ ФСТЭК России № 17 "Об утверждении Требований о защите информации, не составляющей государственную тайну, содержащейся в государственных информационных системах" в государственных информационных системах (ГИС) до 1 класса защищенности включительно;
- Приказ ФСТЭК России № 21 "Об утверждении Состава и содержания организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных" для обеспечения защищенности персональных данных в информационных системах персональных данных данных (ИСПДн) до 1 уровня включительно;
- Приказ ФСТЭК России № 31 "Об утверждении Требований к обеспечению за-ЩИТЫ информации В автоматизированных системах управления производственными и технологическими процессами на критически важных объектах, потенциально опасных объектах, а также объектах, представляющих повышенную опасность для жизни и здоровья людей и для окружающей природной среды", автоматизированных В системах управления технологическими процессами (АСУ ТП) до 1 класса защищенности объектах включительно, значимых критической информационной инфраструктуры (КИИ) до 1 категории включительно;
- Требования по безопасности информации, устанавливающим уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий (ФСТЭК России, 2020 г.) по 4 уровню доверия;
- Требования по безопасности информации к средствам виртуализации (ФСТЭК России, 2022) по 4 классу защиты;

RU.УГСФ.00001-01 92 01

– Требования по безопасности информации к средствам контейнеризации (ФСТЭК России, 2022) – по 4 классу защиты.